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P R E F A C EP R E F A C E

The evolution of the present text is based on experience teaching introductory dif-

ferential equations and linear algebra with an emphasis on conceptual ideas and

the use of applications and projects to involve students in active problem-solving

experiences. Technical computing environments like Maple, Mathematica, MAT-

LAB, and Python are widely available and are now used extensively by practicing

engineers and scientists. This change in professional practice motivates a shift from

the traditional concentration on manual symbolic methods to coverage also of quali-

tative and computer-based methods that employ numerical computation and graphi-

cal visualization to develop greater conceptual understanding. A bonus of this more

comprehensive approach is accessibility to a wider range of more realistic applica-

tions of differential equations.

Both the conceptual and the computational aspects of such a course depend

heavily on the perspective and techniques of linear algebra. Consequently, the study

of differential equations and linear algebra in tandem reinforces the learning of both

subjects. In this book we therefore have combined core topics in elementary differ-

ential equations with those concepts and methods of elementary linear algebra that

are needed for a contemporary introduction to differential equations.

Principal Features of This Revision

This 4th edition is the most comprehensive and wide-ranging revision in the history

of this text.

We have enhanced the exposition, as well as added graphics, in numerous

sections throughout the book. We have also inserted new applications, including

biological. Moreover we have exploited throughout the new interactive computer

technology that is now available to students on devices ranging from desktop and

laptop computers to smartphones and graphing calculators. While the text contin-

ues to use standard computer algebra systems such as Mathematica, Maple, and

MATLAB, we have now added the Wolfram j Alpha website. In addition, this is the

first edition of this book to feature Python, a computer platform that is freely avail-

able on the internet and which is gaining in popularity as an all-purpose scientific

computing environment.

However, with a single exception of a new section inserted in Chapter 7 (noted

below), the class-tested table of contents of the book remains unchanged. Therefore,

instructors notes and syllabi will not require revision to continue teaching with this

new edition.

A conspicuous feature of this edition is the insertion of about 80 new computer-

generated figures, many of them illustrating interactive computer applications with

slider bars or touchpad controls that can be used to change initial values or parame-

ters in a differential equation, and immediately see in real time the resulting changes

in the structure of its solutions.

ix
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Some illustrations of the revisions and updating in this edition:

New Exposition In a number of sections, we have added new text and graphics

to enhance student understanding of the subject matter. For instance, see the new

introductory treatments of separable equations in Section 1.4 (page 30), of linear

equations in Section 1.5 (page 46), and of isolated critical points in Sections 9.1

(page 503) and 9.2 (page 514). Also we have updated the examples and accom-

panying graphics in Sections 2.4–2.6, 7.3, and 7.7 to illustrate modern calculator

technology.

New Interactive Technology and Graphics New figures throughout the text il-

lustrate the capability that modern computing technology platforms offer to vary

initial conditions and other parameters interactively. These figures are accompanied

by detailed instructions that allow students to recreate the figures and make full use

of the interactive features. For example, Section 7.4 includes the figure shown, a

Mathematica-drawn phase plane diagram for a linear system of the form x0 D Ax;

after putting the accompanying code into Mathematica, the user can immediately

see the effect of changing the initial condition

by clicking and dragging the “locator point” ini-

tially set at .4; 2/.

Similarly, the application module for Sec-

tion 5.1 now offers MATLAB and TI-Nspire

graphics with interactive slider bars that vary

the coefficients of a linear differential equation.

The Section 11.2 application module features

a new MATLAB graphic in which the user can

vary the order of a series solution of an ini-

tial value problem, again immediately display-

ing the resulting graphical change in the corre-

sponding approximate solution.

–4 –2

–2

–4

0

0

x1
x

2

2

2

4
(4, 2)

4

New Mathematica graphic in Section 7.4

New Content The single entirely new section for this edition is Section 7.4,

which is devoted to the construction of a “gallery” of phase plane portraits illus-

trating all the possible geometric behaviors of solutions of the 2-dimensional linear

system x0 D Ax. In motivation and preparation for the detailed study of eigenvalue-

eigenvector methods in subsequent sections of Chapter 7 (which then follow in the

same order as in the previous edition), Section 7.4 shows how the particular ar-

rangements of eigenvalues and eigenvectors of the coefficient matrix A correspond

to identifiable patterns—“fingerprints,” so to speak—in the phase plane portrait of

the system. The resulting gallery is shown in the two pages of phase plane portraits

in Figure 7.4.16 (pages 417–418) at the end of the section. The new 7.4 appli-

cation module (on dynamic phase plane portraits, page 421) shows how students

can use interactive computer systems to bring to life this gallery by allowing initial

conditions, eigenvalues, and even eigenvectors to vary in real time. This dynamic

approach is then illustrated with several new graphics inserted in the remainder of

Chapter 7.

Finally, for a new biological application, see the application module for Sec-

tion 9.4, which now includes a substantial investigation (page 551) of the nonlinear

FitzHugh–Nagumo equations of neuroscience, which were introduced to model the

behavior of neurons in the nervous system.

New Topical Headings Many of the examples and problems are now organized

under headings that make the topic easy to see at a glance. This not only adds to

the readability of the book, but it also makes it easier to choose in-class examples

and homework problems. For instance, most of the text examples in Section 1.4 are
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now labelled by topic, and the same is true of the wealth of problems following this

section.

New Expanded Applications Website The effectiveness of the application mod-

ules located throughout the text is greatly enhanced by the supplementary material

found at the new Expanded Applications website. Nearly all of the application mod-

ules in the text are marked with and a unique “tiny URL”—a web address that

leads directly to an Expanded Applications page containing a wealth of electronic

resources supporting that module. Typical Expanded Applications materials include

an enhanced and expanded PDF version of the text with further discussion or addi-

tional applications, together with computer files in a variety of platforms, including

Mathematica, Maple, MATLAB, and in some cases Python and/or TI calculator.

These files provide all code appearing in the text as well as equivalent versions in

other platforms, allowing students to immediately use the material in the Applica-

tion Module on the computing platform of their choice. In addition to the URLs

dispersed throughout the text, the Expanded Applications can be accessed by going

to the Expanded Applications home page through this URL: goo.gl/BXB9k4. Note

that when you enter URLs for the Extended Applications, take care to distinguish

the following characters:

lD lowercase L 1 D one

I D uppercase I 0 D zero

O D uppercase O

Features of This Text

Computing Features The following features highlight the flavor of computing

technology that distinguishes much of our exposition.

� Almost 600 computer-generated figures show students vivid pictures of di-

rection fields, solution curves, and phase plane portraits that bring symbolic

solutions of differential equations to life.

� About three dozen application modules follow key sections throughout the

text. Most of these applications outline technology investigations that can be

carried out using a variety of popular technical computing systems and which

seek to actively engage students in the application of new technology. These

modules are accompanied by the new Expanded Applications website previ-

ously detailed, which provides explicit code for nearly all of the applications

in a number of popular technology platforms.

� The early introduction of numerical solution techniques in Chapter 2 (on math-

ematical models and numerical methods) allows for a fresh numerical empha-

sis throughout the text. Here and in Chapter 7, where numerical techniques

for systems are treated, a concrete and tangible flavor is achieved by the inclu-

sion of numerical algorithms presented in parallel fashion for systems ranging

from graphing calculators to MATLAB and Python.

Modeling Features Mathematical modeling is a goal and constant motivation for

the study of differential equations. For a small sample of the range of applications

in this text, consider the following questions:

� What explains the commonly observed time lag between indoor and outdoor

daily temperature oscillations? (Section 1.5)

� What makes the difference between doomsday and extinction in alligator pop-

ulations? (Section 2.1)

http://goo.gl/BXB9k4
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� How do a unicycle and a car react differently to road bumps? (Sections 5.6

and 7.5)

� Why might an earthquake demolish one building and leave standing the one

next door? (Section 7.5)

� How can you predict the time of next perihelion passage of a newly observed

comet? (Section 7.7)

� What determines whether two species will live harmoniously together or

whether competition will result in the extinction of one of them and the sur-

vival of the other? (Section 9.3)

Organization and Content This text reshapes the usual sequence of topics to

accommodate new technology and new perspectives. For instance:

� After a precis of first-order equations in Chapter 1 (though with the coverage

of certain traditional symbolic methods streamlined a bit), Chapter 2 offers an

early introduction to mathematical modeling, stability and qualitative proper-

ties of differential equations, and numerical methods—a combination of topics

that frequently are dispersed later in an introductory course.

� Chapters 3 (Linear Systems and Matrices), 4 (Vector Spaces), and 6 (Eigen-

values and Eigenvectors) provide concrete and self-contained coverage of the

elementary linear algebra concepts and techniques that are needed for the solu-

tion of linear differential equations and systems. Chapter 4 includes sections

4.5 (row and column spaces) and 4.6 (orthogonal vectors in Rn). Chapter

6 concludes with applications of diagonalizable matrices and a proof of the

Cayley–Hamilton theorem for such matrices.

� Chapter 5 exploits the linear algebra of Chapters 3 and 4 to present efficiently

the theory and solution of single linear differential equations. Chapter 7 is

based on the eigenvalue approach to linear systems, and includes (in Section

7.6) the Jordan normal form for matrices and its application to the general

Cayley–Hamilton theorem. This chapter includes an unusual number of ap-

plications (ranging from railway cars to earthquakes) of the various cases of

the eigenvalue method, and concludes in Section 7.7 with numerical methods

for systems.

� Chapter 8 is devoted to matrix exponentials with applications to linear systems

of differential equations. The spectral decomposition method of Section 8.3

offers students an especially concrete approach to the computation of matrix

exponentials.

� Chapter 9 exploits linear methods for the investigation of nonlinear systems

and phenomena, and ranges from phase plane analysis to applications involv-

ing ecological and mechanical systems.

� Chapters 10 treats Laplace transform methods for the solution of constant-

coefficient linear differential equations with a goal of handling the piecewise

continuous and periodic forcing functions that are common in physical ap-

plications. Chapter 11 treats power series methods with a goal of discussing

Bessel’s equation with sufficient detail for the most common elementary ap-

plications.

This edition of the text also contains over 1800 end-of-section exercises, in-

cluding a wealth of application problems. The Answers to Selected Problems sec-

tion (page 677) includes answers to most odd-numbered problems plus a good many

even-numbered ones, as well as about 175 computer-generated graphics to enhance

its value as a learning aid.
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Supplements

Instructor’s Solutions Manual (0-13-449825-9) is available for instructors to down-

load at Pearson’s Instructor Resource Center (pearsonhighered.com/irc). This man-

ual provides worked-out solutions for most of the problems in the book.

Student’s Solutions Manual (0-13-449814-3) contains solutions for most of the

odd-numbered problems.

Both manuals have been reworked extensively for this edition with improved

explanations and more details inserted in the solutions of many problems.
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11 First-Order
Differential Equations

1.1 Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra

is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing

quantities.

Because the derivative dx=dt D f 0.t/ of the function f is the rate at which

the quantity x D f .t/ is changing with respect to the independent variable t , it

is natural that equations involving derivatives are frequently used to describe the

changing universe. An equation relating an unknown function and one or more of

its derivatives is called a differential equation.

Example 1 The differential equation
dx

dt
D x2

C t2

involves both the unknown function x.t/ and its first derivative x0.t/ D dx=dt . The differential

equation

d2y

dx2
C 3

dy

dx
C 7y D 0

involves the unknown function y of the independent variable x and the first two derivatives

y0 and y00 of y.

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical

situation.

2. To find—either exactly or approximately—the appropriate solution of that

equation.

3. To interpret the solution that is found.

In algebra, we typically seek the unknown numbers that satisfy an equation

such as x3 C 7x2 � 11x C 41 D 0. By contrast, in solving a differential equation, we

1



2 Chapter 1 First-Order Differential Equations

are challenged to find the unknown functions y D y.x/ for which an identity such

as y0.x/ D 2xy.x/—that is, the differential equation

dy

dx
D 2xy

—holds on some interval of real numbers. Ordinarily, we will want to find all

solutions of the differential equation, if possible.

Example 2 If C is a constant and

y.x/ D Cex
2

; (1)

then

dy

dx
D C

�

2xex
2
�

D .2x/
�

Cex
2
�

D 2xy:

Thus every function y.x/ of the form in Eq. (1) satisfies—and thus is a solution of—the

differential equation
dy

dx
D 2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of this differen-

tial equation, one for each choice of the arbitrary constant C . By the method of separation of

variables (Section 1.4) it can be shown that every solution of the differential equation in (2)

is of the form in Eq. (1).

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and

principles into differential equations. In each of these examples the independent

variable is time t , but we will see numerous examples in which some quantity other

than time is the independent variable.

Example 3 Rate of cooling Newton’s law of cooling may be stated in this way: The time rate of change

(the rate of change with respect to time t) of the temperature T .t/ of a body is proportional

to the difference between T and the temperature A of the surrounding medium (Fig. 1.1.1).

That is,
dT

dt
D �k.T � A/; (3)

where k is a positive constant. Observe that if T > A, then dT=dt < 0, so the temperature is

a decreasing function of t and the body is cooling. But if T < A, then dT=dt > 0, so that T

is increasing.

Thus the physical law is translated into a differential equation. If we are given the

values of k and A, we should be able to find an explicit formula for T .t/, and then—with the

aid of this formula—we can predict the future temperature of the body.

Temperature T

Temperature A

FIGURE 1.1.1. Newton’s law of
cooling, Eq. (3), describes the cooling
of a hot rock in water.

Example 4 Draining tank Torricelli’s law implies that the time rate of change of the volume V of

water in a draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water

in the tank:
dV

dt
D �k

p
y; (4)

where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional area A,

then V D Ay, so dV=dt D A � .dy=dt/. In this case Eq. (4) takes the form

dy

dt
D �h

p
y; (5)

where h D k=A is a constant.

yVolume V

FIGURE 1.1.2. Torricelli’s law of
draining, Eq. (4), describes the
draining of a water tank.



1.1 Differential Equations and Mathematical Models 3

Example 5 Population growth The time rate of change of a population P.t/ with constant birth and

death rates is, in many simple cases, proportional to the size of the population. That is,

dP

dt
D kP; (6)

where k is the constant of proportionality.

Let us discuss Example 5 further. Note first that each function of the form

P.t/ D Cekt (7)

is a solution of the differential equation

dP

dt
D kP

in (6). We verify this assertion as follows:

P 0.t/ D C kekt
D k

�

Cekt

�

D kP.t/

for all real numbers t . Because substitution of each function of the form given in

(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation

dP=dt D kP has infinitely many different solutions of the form P.t/ D Cekt , one for

each choice of the “arbitrary” constant C . This is typical of differential equations.

It is also fortunate, because it may allow us to use additional information to select

from among all these solutions a particular one that fits the situation under study.

Example 6 Population growth Suppose that P.t/ D Cekt is the population of a colony of bacteria at

time t , that the population at time t D 0 (hours, h) was 1000, and that the population doubled

after 1 h. This additional information about P.t/ yields the following equations:

1000 D P.0/ D Ce0
D C;

2000 D P.1/ D Cek :

It follows that C D 1000 and that ek D 2, so k D ln 2 � 0:693147. With this value of k the

differential equation in (6) is

dP

dt
D .ln 2/P � .0:693147/P:

Substitution of k D ln 2 and C D 1000 in Eq. (7) yields the particular solution

P.t/ D 1000e.ln 2/t
D 1000.eln 2/t

D 1000 � 2t (because eln 2
D 2)

that satisfies the given conditions. We can use this particular solution to predict future popu-

lations of the bacteria colony. For instance, the predicted number of bacteria in the population

after one and a half hours (when t D 1:5) is

P.1:5/ D 1000 � 23=2
� 2828:

The condition P.0/ D 1000 in Example 6 is called an initial condition because

we frequently write differential equations for which t D 0 is the “starting time.”

Figure 1.1.3 shows several different graphs of the form P.t/ D Cekt with k D ln 2.

The graphs of all the infinitely many solutions of dP=dt D kP in fact fill the entire

two-dimensional plane, and no two intersect. Moreover, the selection of any one

point P0 on the P -axis amounts to a determination of P.0/. Because exactly one

solution passes through each such point, we see in this case that an initial condition

P.0/ D P0 determines a unique solution agreeing with the given data.

0 1 2 3

t

0P

–2

–1

–4

–2

–6

–8

2

4

6

8
C = 12 C = 6 C = 3

C = –6

C =
1

2

C = –
1

2

C = 1

C = –1

C = –3C = –12

FIGURE 1.1.3. Graphs of

P.t/ D Ce
kt with k D ln 2.



4 Chapter 1 First-Order Differential Equations

Mathematical Models

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial

process of mathematical modeling (Fig. 1.1.4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the

construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

Mathematical
model

Mathematical
results

Mathematical
analysis

Formulation Interpretation

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the

population at some future time. A mathematical model consists of a list of vari-

ables (P and t) that describe the given situation, together with one or more equations

relating these variables (dP=dt D kP , P.0/ D P0) that are known or are assumed to

hold. The mathematical analysis consists of solving these equations (here, for P as

a function of t). Finally, we apply these mathematical results to attempt to answer

the original real-world question.

As an example of this process, think of first formulating the mathematical

model consisting of the equations dP=dt D kP , P.0/ D 1000, describing the bac-

teria population of Example 6. Then our mathematical analysis there consisted of

solving for the solution function P.t/ D 1000e.ln 2/t D 1000 � 2t as our mathemat-

ical result. For an interpretation in terms of our real-world situation—the actual

bacteria population—we substituted t D 1:5 to obtain the predicted population of

P.1:5/ � 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is

growing under ideal conditions of unlimited space and food supply, our prediction

may be quite accurate, in which case we conclude that the mathematical model is

adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential

equation accurately fits the actual population we’re studying. For instance, for no

choice of the constants C and k does the solution P.t/ D Cekt in Eq. (7) accurately

describe the actual growth of the human population of the world over the past few

centuries. We must conclude that the differential equation dP=dt D kP is inadequate

for modeling the world population—which in recent decades has “leveled off” as

compared with the steeply climbing graphs in the upper half (P > 0) of Fig. 1.1.3.

With sufficient insight, we might formulate a new mathematical model including

a perhaps more complicated differential equation, one that takes into account such

factors as a limited food supply and the effect of increased population on birth and

death rates. With the formulation of this new mathematical model, we may attempt

to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise manner. If

we can solve the new differential equation, we get new solution functions to com-
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pare with the real-world population. Indeed, a successful population analysis may

require refining the mathematical model still further as it is repeatedly measured

against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af-

fect our bacteria population. This made the mathematical analysis quite simple,

perhaps unrealistically so. A satisfactory mathematical model is subject to two con-

tradictory requirements: It must be sufficiently detailed to represent the real-world

situation with relative accuracy, yet it must be sufficiently simple to make the math-

ematical analysis practical. If the model is so detailed that it fully represents the

physical situation, then the mathematical analysis may be too difficult to carry out.

If the model is too simple, the results may be so inaccurate as to be useless. Thus

there is an inevitable tradeoff between what is physically realistic and what is math-

ematically possible. The construction of a model that adequately bridges this gap

between realism and feasibility is therefore the most crucial and delicate step in

the process. Ways must be found to simplify the model mathematically without

sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of

this introductory section is devoted to simple examples and to standard terminology

used in discussing differential equations and their solutions.

Examples and Terminology

Example 7 If C is a constant and y.x/ D 1=.C � x/, then

dy

dx
D

1

.C � x/2
D y2

if x 6D C . Thus

y.x/ D
1

C � x
(8)

defines a solution of the differential equation

dy

dx
D y2 (9)

on any interval of real numbers not containing the point x D C . Actually, Eq. (8) defines a

one-parameter family of solutions of dy=dx D y2, one for each value of the arbitrary constant

or “parameter” C . With C D 1 we get the particular solution

y.x/ D
1

1 � x

that satisfies the initial condition y.0/ D 1. As indicated in Fig. 1.1.5, this solution is contin-

uous on the interval .�1; 1/ but has a vertical asymptote at x D 1.

Example 8 Verify that the function y.x/ D 2x1=2 � x1=2 ln x satisfies the differential equation

4x2y00
C y D 0 (10)

for all x > 0.

Solution First we compute the derivatives

y0.x/ D �
1

2
x�1=2 ln x and y00.x/ D

1

4
x�3=2 ln x �

1

2
x�3=2:

Then substitution into Eq. (10) yields

4x2y00
C y D 4x2

�

1

4
x�3=2 ln x �

1

2
x�3=2

�

C 2x1=2
� x1=2 ln x D 0

if x is positive, so the differential equation is satisfied for all x > 0.
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The fact that we can write a differential equation is not enough to guarantee

that it has a solution. For example, it is clear that the differential equation

.y0/2
C y2

D �1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be

negative. For a variation on this theme, note that the equation

.y0/2
C y2

D 0 (12)

obviously has only the (real-valued) solution y.x/ � 0. In our previous examples

any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that

appears in it. The differential equation of Example 8 is of second order, those in

Examples 2 through 7 are first-order equations, and

y.4/
C x2y.3/

C x5y D sin x

is a fourth-order equation. The most general form of an nth-order differential

equation with independent variable x and unknown function or dependent variable

y D y.x/ is

F
�

x; y; y0; y00; : : : ; y.n/

�

D 0; (13)

where F is a specific real-valued function of n C 2 variables.

Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function u D u.x/ is a solution of the differential

equation in (13) on the interval I provided that the derivatives u0, u00, : : : , u.n/ exist

on I and

F
�

x; u; u0; u00; : : : ; u.n/

�

D 0

for all x in I. For the sake of brevity, we may say that u D u.x/ satisfies the

differential equation in (13) on I.

Remark Recall from elementary calculus that a differentiable function on an open interval

is necessarily continuous there. This is why only a continuous function can qualify as a

(differentiable) solution of a differential equation on an interval.

0 5

0

5

(0, 1)

x

y

–5
–5

y = 1/(1 – x)

x = 1

FIGURE 1.1.5. The solution of
y

0 D y
2 defined by y.x/ D 1=.1 � x/.

Example 7 Continued Figure 1.1.5 shows the two “connected” branches of the graph y D 1=.1 � x/.

The left-hand branch is the graph of a (continuous) solution of the differential equation y0 D

y2 that is defined on the interval .�1; 1/. The right-hand branch is the graph of a different

solution of the differential equation that is defined (and continuous) on the different interval

.1; 1/. So the single formula y.x/ D 1=.1 � x/ actually defines two different solutions (with

different domains of definition) of the same differential equation y0 D y2.

Example 9 If A and B are constants and

y.x/ D A cos 3x C B sin 3x; (14)

then two successive differentiations yield

y0.x/ D �3A sin 3x C 3B cos 3x;

y00.x/ D �9A cos 3x � 9B sin 3x D �9y.x/

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter family of

solutions of the second-order differential equation

y00
C 9y D 0 (15)

on the whole real number line. Figure 1.1.6 shows the graphs of several such solutions.
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Although the differential equations in (11) and (12) are exceptions to the gen-

eral rule, we will see that an nth-order differential equation ordinarily has an n-

parameter family of solutions—one involving n different arbitrary constants or pa-

0 3

0

5

x

y

–5
–3

y1

y2

y3

FIGURE 1.1.6. The three solutions
y1.x/ D 3 cos 3x, y2.x/ D 2 sin 3x,

and y3.x/ D �3 cos 3x C 2 sin 3x of
the differential equation y

00 C 9y D 0.

rameters.

In both Eqs. (11) and (12), the appearance of y0 as an implicitly defined func-

tion causes complications. For this reason, we will ordinarily assume that any dif-

ferential equation under study can be solved explicitly for the highest derivative that

appears; that is, that the equation can be written in the so-called normal form

y.n/
D G

�

x; y; y0; y00; : : : ; y.n�1/

�

; (16)

where G is a real-valued function of n C 1 variables. In addition, we will always

seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ-

ential equations, meaning that the unknown function (dependent variable) depends

on only a single independent variable. If the dependent variable is a function of

two or more independent variables, then partial derivatives are likely to be involved;

if they are, the equation is called a partial differential equation. For example, the

temperature u D u.x; t/ of a long thin uniform rod at the point x at time t satisfies

(under appropriate simple conditions) the partial differential equation

@u

@t
D k

@2u

@x2
;

where k is a constant (called the thermal diffusivity of the rod). In Chapters 1

through 8 we will be concerned only with ordinary differential equations and will

refer to them simply as differential equations.

In this chapter we concentrate on first-order differential equations of the form

dy

dx
D f .x; y/: (17)

We also will sample the wide range of applications of such equations. A typical

mathematical model of an applied situation will be an initial value problem, con-

sisting of a differential equation of the form in (17) together with an initial condi-

tion y.x0/ D y0. Note that we call y.x0/ D y0 an initial condition whether or not

x0 D 0. To solve the initial value problem

dy

dx
D f .x; y/; y.x0/ D y0 (18)

means to find a differentiable function y D y.x/ that satisfies both conditions in

Eq. (18) on some interval containing x0.

Example 10 Given the solution y.x/ D 1=.C � x/ of the differential equation dy=dx D y2 discussed in

Example 7, solve the initial value problem

dy

dx
D y2; y.1/ D 2:

Solution We need only find a value of C so that the solution y.x/ D 1=.C � x/ satisfies the initial

condition y.1/ D 2. Substitution of the values x D 1 and y D 2 in the given solution yields

2 D y.1/ D
1

C � 1
;
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so 2C � 2 D 1, and hence C D
3

2
. With this value of C we obtain the desired solution

(1, 2)

(2, –2)

0 5

0

5

x

y

–5
–5

y = 2/(3 – 2x)

x = 3/2

FIGURE 1.1.7. The solutions of

y
0 D y

2 defined by
y.x/ D 2=.3 � 2x/.

y.x/ D
1

3

2
� x

D
2

3 � 2x
:

Figure 1.1.7 shows the two branches of the graph y D 2=.3 � 2x/. The left-hand branch is

the graph on .�1; 3

2
/ of the solution of the given initial value problem y0 D y2, y.1/ D 2.

The right-hand branch passes through the point .2; �2/ and is therefore the graph on . 3

2
; 1/

of the solution of the different initial value problem y0 D y2, y.2/ D �2.

The central question of greatest immediate interest to us is this: If we are given

a differential equation known to have a solution satisfying a given initial condition,

how do we actually find or compute that solution? And, once found, what can we do

with it? We will see that a relatively few simple techniques—separation of variables

(Section 1.4), solution of linear equations (Section 1.5), elementary substitution

methods (Section 1.6)—are enough to enable us to solve a variety of first-order

equations having impressive applications.

1.1 Problems
In Problems 1 through 12, verify by substitution that each

given function is a solution of the given differential equation.

Throughout these problems, primes denote derivatives with re-

spect to x.

1. y0 D 3x2; y D x3 C 7

2. y0 C 2y D 0; y D 3e�2x

3. y00 C 4y D 0; y1 D cos 2x, y2 D sin 2x

4. y00 D 9y; y1 D e3x , y2 D e�3x

5. y0 D y C 2e�x ; y D ex � e�x

6. y00 C 4y0 C 4y D 0; y1 D e�2x , y2 D xe�2x

7. y00 � 2y0 C 2y D 0; y1 D ex cos x, y2 D ex sin x

8. y00 Cy D 3 cos 2x, y1 D cos x �cos 2x, y2 D sin x �cos 2x

9. y0 C 2xy2 D 0; y D
1

1 C x2

10. x2y00 C xy0 � y D ln x; y1 D x � ln x, y2 D
1

x
� ln x

11. x2y00 C 5xy0 C 4y D 0; y1 D
1

x2
, y2 D

ln x

x2

12. x2y00 � xy0 C 2y D 0; y1 D x cos.ln x/, y2 D x sin.ln x/

In Problems 13 through 16, substitute y D erx into the given

differential equation to determine all values of the constant r

for which y D erx is a solution of the equation.

13. 3y0 D 2y 14. 4y00 D y

15. y00 C y0 � 2y D 0 16. 3y00 C 3y0 � 4y D 0

In Problems 17 through 26, first verify that y.x/ satisfies the

given differential equation. Then determine a value of the con-

stant C so that y.x/ satisfies the given initial condition. Use a

computer or graphing calculator (if desired) to sketch several

typical solutions of the given differential equation, and high-

light the one that satisfies the given initial condition.

17. y0 C y D 0; y.x/ D Ce�x , y.0/ D 2

18. y0 D 2y; y.x/ D Ce2x , y.0/ D 3

19. y0 D y C 1; y.x/ D Cex � 1, y.0/ D 5

20. y0 D x � y; y.x/ D Ce�x C x � 1, y.0/ D 10

21. y0 C 3x2y D 0; y.x/ D Ce�x
3
, y.0/ D 7

22. eyy0 D 1; y.x/ D ln.x C C /, y.0/ D 0

23. x
dy

dx
C 3y D 2x5; y.x/ D

1

4
x5 C Cx�3, y.2/ D 1

24. xy0 � 3y D x3; y.x/ D x3.C C ln x/, y.1/ D 17

25. y0 D 3x2.y2 C 1/; y.x/ D tan.x3 C C /, y.0/ D 1

26. y0 C y tan x D cos x; y.x/ D .x C C / cos x, y.�/ D 0

In Problems 27 through 31, a function y D g.x/ is described

by some geometric property of its graph. Write a differential

equation of the form dy=dx D f .x; y/ having the function g as

its solution (or as one of its solutions).

27. The slope of the graph of g at the point .x; y/ is the sum

of x and y.

28. The line tangent to the graph of g at the point .x; y/ inter-

sects the x-axis at the point .x=2; 0/.

29. Every straight line normal to the graph of g passes through

the point .0; 1/. Can you guess what the graph of such a

function g might look like?

30. The graph of g is normal to every curve of the form

y D x2 C k (k is a constant) where they meet.

31. The line tangent to the graph of g at .x; y/ passes through

the point .�y; x/.

Differential Equations as Models

In Problems 32 through 36, write—in the manner of Eqs. (3)

through (6) of this section—a differential equation that is a

mathematical model of the situation described.

32. The time rate of change of a population P is proportional

to the square root of P .

33. The time rate of change of the velocity v of a coasting

motorboat is proportional to the square of v.

34. The acceleration dv=dt of a Lamborghini is proportional

to the difference between 250 km=h and the velocity of the

car.
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35. In a city having a fixed population of P persons, the time

rate of change of the number N of those persons who have

heard a certain rumor is proportional to the number of

those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate

of change of the number N of those persons infected with

a certain contagious disease is proportional to the product

of the number who have the disease and the number who

do not.

In Problems 37 through 42, determine by inspection at least

one solution of the given differential equation. That is, use

your knowledge of derivatives to make an intelligent guess.

Then test your hypothesis.

37. y00 D 0 38. y0 D y

39. xy0 C y D 3x2 40. .y0/2 C y2 D 1

41. y0 C y D ex 42. y00 C y D 0

Problems 43 through 46 concern the differential equation

dx

dt
D kx2;

where k is a constant.

43. (a) If k is a constant, show that a general (one-parameter)

solution of the differential equation is given by x.t/ D

1=.C � kt/, where C is an arbitrary constant.

(b) Determine by inspection a solution of the initial value

problem x0 D kx2, x.0/ D 0.

44. (a) Assume that k is positive, and then sketch graphs of

solutions of x0 D kx2 with several typical positive

values of x.0/.

(b) How would these solutions differ if the constant k

were negative?

45. Suppose a population P of rodents satisfies the differen-

tial equation dP=dt D kP 2. Initially, there are P.0/ D

2 rodents, and their number is increasing at the rate of

dP=dt D 1 rodent per month when there are P D 10 ro-

dents. Based on the result of Problem 43, how long will it

take for this population to grow to a hundred rodents? To

a thousand? What’s happening here?

46. Suppose the velocity v of a motorboat coasting in water

satisfies the differential equation dv=dt D kv2. The ini-

tial speed of the motorboat is v.0/ D 10 meters per sec-

ond (m=s), and v is decreasing at the rate of 1 m=s2 when

v D 5 m=s. Based on the result of Problem 43, long does

it take for the velocity of the boat to decrease to 1 m=s?

To 1

10
m=s? When does the boat come to a stop?

47. In Example 7 we saw that y.x/ D 1=.C � x/ defines a

one-parameter family of solutions of the differential equa-

tion dy=dx D y2. (a) Determine a value of C so that

y.10/ D 10. (b) Is there a value of C such that y.0/ D 0?

Can you nevertheless find by inspection a solution of

dy=dx D y2 such that y.0/ D 0? (c) Figure 1.1.8 shows

typical graphs of solutions of the form y.x/ D 1=.C � x/.

Does it appear that these solution curves fill the entire xy-

plane? Can you conclude that, given any point .a; b/ in

the plane, the differential equation dy=dx D y2 has ex-

actly one solution y.x/ satisfying the condition y.a/ D b?

48. (a) Show that y.x/ D Cx4 defines a one-parameter fam-

ily of differentiable solutions of the differential equation

xy0 D 4y (Fig. 1.1.9). (b) Show that

y.x/ D

(

�x4 if x < 0,

x4 if x = 0

defines a differentiable solution of xy0 D 4y for all x, but is

not of the form y.x/ D Cx4. (c) Given any two real num-

bers a and b, explain why—in contrast to the situation in

part (c) of Problem 47—there exist infinitely many differ-

entiable solutions of xy0 D 4y that all satisfy the condition

y.a/ D b.
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FIGURE 1.1.8. Graphs of solutions of the
equation dy=dx D y
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FIGURE 1.1.9. The graph y D Cx
4 for

various values of C .




